Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.975
Filtrar
1.
Life Sci ; 345: 122608, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574885

RESUMEN

BACKGROUND AND AIMS: The protein phosphatase 1 regulatory inhibitor subunit 1A (PPP1R1A) has been linked with insulin secretion and diabetes mellitus. Yet, its full significance in pancreatic ß-cell function remains unclear. This study aims to elucidate the role of the PPP1R1A gene in ß-cell biology using human pancreatic islets and rat INS-1 (832/13) cells. RESULTS: Disruption of Ppp1r1a in INS-1 cells was associated with reduced insulin secretion and impaired glucose uptake; however, cell viability, ROS, apoptosis or proliferation were intact. A significant downregulation of crucial ß-cell function genes such as Ins1, Ins2, Pcsk1, Cpe, Pdx1, Mafa, Isl1, Glut2, Snap25, Vamp2, Syt5, Cacna1a, Cacna1d and Cacnb3, was observed upon Ppp1r1a disruption. Furthermore, silencing Pdx1 in INS-1 cells altered PPP1R1A expression, indicating that PPP1R1A is a target gene for PDX1. Treatment with rosiglitazone increased Ppp1r1a expression, while metformin and insulin showed no effect. RNA-seq analysis of human islets revealed high PPP1R1A expression, with α-cells showing the highest levels compared to other endocrine cells. Muscle tissues exhibited greater PPP1R1A expression than pancreatic islets, liver, or adipose tissues. Co-expression analysis revealed significant correlations between PPP1R1A and genes associated with insulin biosynthesis, exocytosis machinery, and intracellular calcium transport. Overexpression of PPP1R1A in human islets augmented insulin secretion and upregulated protein expression of Insulin, MAFA, PDX1, and GLUT1, while silencing of PPP1R1A reduced Insulin, MAFA, and GLUT1 protein levels. CONCLUSION: This study provides valuable insights into the role of PPP1R1A in regulating ß-cell function and glucose homeostasis. PPP1R1A presents a promising opportunity for future therapeutic interventions.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Ratas , Animales , Islotes Pancreáticos/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Secreción de Insulina/genética , Línea Celular , Glucosa/metabolismo , Canales de Calcio/metabolismo
3.
Soft Matter ; 20(16): 3464-3472, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38573072

RESUMEN

Pancreatic ß-cells regulate glucose homeostasis through glucose-stimulated insulin secretion, which is hindered in type-2 diabetes. Transport of the insulin vesicles is expected to be affected by changes in the viscoelastic and transport properties of the cytoplasm. These are evaluated in situ through particle-tracking measurements using a rat insulinoma ß-cell line. The use of inert probes assists in decoupling the material properties of the cytoplasm from the active transport through cellular processes. The effect of glucose-stimulated insulin secretion is examined, and the subsequent remodeling of the cytoskeleton, at constant effects of cell activity, is shown to result in reduced mobility of the tracer particles. Induction of diabetic-like conditions is identified to alter the mean-squared displacement of the passive particles in the cytoplasm and diminish its reaction to glucose stimulation.


Asunto(s)
Células Secretoras de Insulina , Insulina , Células Secretoras de Insulina/metabolismo , Animales , Ratas , Insulina/metabolismo , Glucosa/metabolismo , Reología , Secreción de Insulina , Línea Celular Tumoral , Diabetes Mellitus Tipo 2/metabolismo
4.
Endocrinology ; 165(5)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38578954

RESUMEN

In the classical insulin target tissues of liver, muscle, and adipose tissue, chronically elevated levels of free fatty acids (FFA) impair insulin signaling. Insulin signaling molecules are also present in ß-cells where they play a role in ß-cell function. Therefore, inhibition of the insulin/insulin-like growth factor 1 pathway may be involved in fat-induced ß-cell dysfunction. To address the role of ß-cell insulin resistance in FFA-induced ß-cell dysfunction we co-infused bisperoxovanadate (BPV) with oleate or olive oil for 48 hours in rats. BPV, a tyrosine phosphatase inhibitor, acts as an insulin mimetic and is devoid of any antioxidant effect that could prevent ß-cell dysfunction, unlike most insulin sensitizers. Following fat infusion, rats either underwent hyperglycemic clamps for assessment of ß-cell function in vivo or islets were isolated for ex vivo assessment of glucose-stimulated insulin secretion (GSIS). We also incubated islets with oleate or palmitate and BPV for in vitro assessment of GSIS and Akt (protein kinase B) phosphorylation. Next, mice with ß-cell specific deletion of PTEN (phosphatase and tensin homolog; negative regulator of insulin signaling) and littermate controls were infused with oleate for 48 hours, followed by hyperglycemic clamps or ex vivo evaluation of GSIS. In rat experiments, BPV protected against fat-induced impairment of ß-cell function in vivo, ex vivo, and in vitro. In mice, ß-cell specific deletion of PTEN protected against oleate-induced ß-cell dysfunction in vivo and ex vivo. These data support the hypothesis that ß-cell insulin resistance plays a causal role in FFA-induced ß-cell dysfunction.


Asunto(s)
Resistencia a la Insulina , Células Secretoras de Insulina , Fosfohidrolasa PTEN , Animales , Resistencia a la Insulina/fisiología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Ratas , Ratones , Masculino , Fosfohidrolasa PTEN/metabolismo , Ácido Oléico/farmacología , Insulina/metabolismo , Ratones Endogámicos C57BL , Secreción de Insulina/efectos de los fármacos , Ácidos Grasos no Esterificados/metabolismo , Ratas Sprague-Dawley
5.
PLoS One ; 19(4): e0300965, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38557554

RESUMEN

AIM: Our study aims to identify novel non-coding RNA-mRNA regulatory networks associated with ß-cell dysfunction and compensatory responses in obesity-related diabetes. METHODS: Glucose metabolism, islet architecture and secretion, and insulin sensitivity were characterized in C57BL/6J mice fed on a 60% high-fat diet (HFD) or control for 24 weeks. Islets were isolated for whole transcriptome sequencing to identify differentially expressed (DE) mRNAs, miRNAs, IncRNAs, and circRNAs. Regulatory networks involving miRNA-mRNA, lncRNA-mRNA, and lncRNA-miRNA-mRNA were constructed and functions were assessed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. RESULTS: Despite compensatory hyperinsulinemia and a significant increase in ß-cell mass with a slow rate of proliferation, HFD mice exhibited impaired glucose tolerance. In isolated islets, insulin secretion in response to glucose and palmitic acid deteriorated after 24 weeks of HFD. Whole transcriptomic sequencing identified a total of 1324 DE mRNAs, 14 DE miRNAs, 179 DE lncRNAs, and 680 DE circRNAs. Our transcriptomic dataset unveiled several core regulatory axes involved in the impaired insulin secretion in HFD mice, such as miR-6948-5p/Cacna1c, miR-6964-3p/Cacna1b, miR-3572-5p/Hk2, miR-3572-5p/Cckar and miR-677-5p/Camk2d. Additionally, proliferative and apoptotic targets, including miR-216a-3p/FKBP5, miR-670-3p/Foxo3, miR-677-5p/RIPK1, miR-802-3p/Smad2 and ENSMUST00000176781/Caspase9 possibly contribute to the increased ß-cell mass in HFD islets. Furthermore, competing endogenous RNAs (ceRNA) regulatory network involving 7 DE miRNAs, 15 DE lncRNAs and 38 DE mRNAs might also participate in the development of HFD-induced diabetes. CONCLUSIONS: The comprehensive whole transcriptomic sequencing revealed novel non-coding RNA-mRNA regulatory networks associated with impaired insulin secretion and increased ß-cell mass in obesity-related diabetes.


Asunto(s)
Diabetes Mellitus , MicroARNs , ARN Largo no Codificante , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Dieta Alta en Grasa/efectos adversos , ARN Circular/metabolismo , Secreción de Insulina , Secuenciación del Exoma , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Obesidad/genética , Redes Reguladoras de Genes , Canales de Calcio Tipo N/metabolismo
6.
Nat Commun ; 15(1): 3318, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38632302

RESUMEN

Pancreatic islets of Langerhans play a pivotal role in regulating blood glucose homeostasis, but critical information regarding their mass, distribution and composition is lacking within a whole organ context. Here, we apply a 3D imaging pipeline to generate a complete account of the insulin-producing islets throughout the human pancreas at a microscopic resolution and within a maintained spatial 3D context. These data show that human islets are far more heterogenous than previously accounted for with regards to their size distribution and cellular make up. By deep tissue 3D imaging, this in-depth study demonstrates that 50% of the human insulin-expressing islets are virtually devoid of glucagon-producing α-cells, an observation with significant implications for both experimental and clinical research.


Asunto(s)
Células Secretoras de Glucagón , Islotes Pancreáticos , Humanos , Páncreas/metabolismo , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucemia/metabolismo , Secreción de Insulina
7.
Cell Transplant ; 33: 9636897241246577, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646716

RESUMEN

Calcineurin inhibitors (CNIs) are critical in preventing rejection posttransplantation but pose an increased risk of post-transplant diabetes (PTD). Recent studies show that late conversion from CNIs to belatacept, a costimulation blocker, improves HbA1c in kidney transplant recipients with PTD or de novo diabetes. This study investigates whether the observed effects on PTD stem solely from CNI withdrawal or if belatacept influences PTD independently. The study assessed the impact of tacrolimus and belatacept on insulin secretion in MIN6 cells (a beta cell line) and rat islets. Tacrolimus and belatacept were administered to the cells and islets, followed by assessments of cell viability and insulin secretion. Tacrolimus impaired insulin secretion without affecting cell viability, while belatacept showed no detrimental effects on either parameter. These findings support clinical observations of improved HbA1c upon switching from tacrolimus to belatacept. Belatacept holds promise in islet or pancreas transplantation, particularly in patients with unstable diabetes. Successful cases of islet transplantation treated with belatacept without severe hypoglycemia highlight its potential in managing PTD. Further research is needed to fully understand the metabolic changes accompanying the transition from CNIs to belatacept. Preserving insulin secretion emerges as a promising avenue for investigation in this context.


Asunto(s)
Abatacept , Inmunosupresores , Insulina , Tacrolimus , Tacrolimus/uso terapéutico , Tacrolimus/farmacología , Abatacept/uso terapéutico , Abatacept/farmacología , Animales , Ratas , Insulina/metabolismo , Inmunosupresores/uso terapéutico , Inmunosupresores/farmacología , Humanos , Masculino , Secreción de Insulina/efectos de los fármacos , Ratones , Trasplante de Islotes Pancreáticos/métodos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo
8.
Signal Transduct Target Ther ; 9(1): 104, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654010

RESUMEN

The angiotensin-converting enzyme 2 (ACE2) is a primary cell surface viral binding receptor for SARS-CoV-2, so finding new regulatory molecules to modulate ACE2 expression levels is a promising strategy against COVID-19. In the current study, we utilized islet organoids derived from human embryonic stem cells (hESCs), animal models and COVID-19 patients to discover that fibroblast growth factor 7 (FGF7) enhances ACE2 expression within the islets, facilitating SARS-CoV-2 infection and resulting in impaired insulin secretion. Using hESC-derived islet organoids, we demonstrated that FGF7 interacts with FGF receptor 2 (FGFR2) and FGFR1 to upregulate ACE2 expression predominantly in ß cells. This upregulation increases both insulin secretion and susceptibility of ß cells to SARS-CoV-2 infection. Inhibiting FGFR counteracts the FGF7-induced ACE2 upregulation, subsequently reducing viral infection and replication in the islets. Furthermore, retrospective clinical data revealed that diabetic patients with severe COVID-19 symptoms exhibited elevated serum FGF7 levels compared to those with mild symptoms. Finally, animal experiments indicated that SARS-CoV-2 infection increased pancreatic FGF7 levels, resulting in a reduction of insulin concentrations in situ. Taken together, our research offers a potential regulatory strategy for ACE2 by controlling FGF7, thereby protecting islets from SARS-CoV-2 infection and preventing the progression of diabetes in the context of COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Factor 7 de Crecimiento de Fibroblastos , Islotes Pancreáticos , Organoides , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , COVID-19/patología , SARS-CoV-2/genética , Organoides/virología , Organoides/metabolismo , Organoides/patología , Animales , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/virología , Islotes Pancreáticos/patología , Factor 7 de Crecimiento de Fibroblastos/genética , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Ratones , Masculino , Células Madre Embrionarias Humanas/metabolismo , Secreción de Insulina/genética
9.
Exp Clin Endocrinol Diabetes ; 132(3): 152-161, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38513652

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a commonly observed complication associated with obesity. The effect of fibroblast growth factor 19 (FGF19), a promising therapeutic agent for metabolic disorders, on pancreatic ß cells in obesity-associated T2DM remains poorly understood. METHODS: Human pancreatic ß cells were cultured with high glucose (HG) and palmitic acid (PA), followed by treatment with FGF19. The cell proliferation, apoptosis, and insulin secretion were evaluated by CCK-8, qRT-PCR, ELISA, flow cytometry, and western blotting. The expression of the insulin receptor substrate (IRS)/glucose transporter (GLUT) pathway was evaluated. The interaction between FGF19 and IRS1 was predicted using the STRING database and verified by co-immunoprecipitation and immunofluorescence. The regulatory effects of the IRS1/GLUT4 pathway on human pancreatic ß cells were assessed by overexpressing IRS1 and silencing IRS1 and GLUT4. RESULTS: HG+PA treatment reduced the human pancreatic ß cell proliferation and insulin secretion and promoted cell apoptosis. However, FGF19 treatment restored these alterations and significantly increased the expressions of IRS1, GLUT1, and GLUT4 in the IRS/GLUT pathway. Furthermore, FGF19 and IRS1 were found to interact. IRS1 overexpression partially promoted the proliferation of pancreatic ß cells and insulin secretion through GLUT4. Additionally, the silencing of IRS1 or GLUT4 attenuated the therapeutic effects of FGF19. CONCLUSION: In conclusion, FGF19 partly promoted the proliferation and insulin secretion of human pancreatic ß cells and inhibited apoptosis by upregulating the IRS1/GLUT4 pathway. These findings establish a theoretical framework for the clinical utilization of FGF19 in the treatment of obesity-associated T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Factores de Crecimiento de Fibroblastos , Transportador de Glucosa de Tipo 1 , Proteínas Sustrato del Receptor de Insulina , Secreción de Insulina , Células Secretoras de Insulina , Obesidad , Humanos , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Tipo 2/complicaciones , Factores de Crecimiento de Fibroblastos/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/fisiología , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Obesidad/etiología , Obesidad/terapia , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacología , Transportador de Glucosa de Tipo 1/metabolismo , Línea Celular Tumoral , Glucosa/metabolismo , Glucosa/farmacología
10.
Front Endocrinol (Lausanne) ; 15: 1340346, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444582

RESUMEN

Insulin secretion within 30 minutes of nutrient ingestion is reduced in people with cystic fibrosis (PwCF) and pancreatic insufficiency and declines with worsening glucose tolerance. The glucose potentiated arginine (GPA) test is validated for quantifying ß-cell secretory capacity as an estimate of functional ß-cell mass but requires technical expertise and is burdensome. This study sought to compare insulin secretion during mixed-meal tolerance testing (MMTT) to GPA-derived parameters in PwCF. Methods: Secondary data analysis of CF-focused prospective studies was performed in PwCF categorized as 1) pancreatic insufficient [PI-CF] or 2) pancreatic sufficient [PS-CF] and in 3) non-CF controls. MMTT: insulin secretory rates (ISR) were derived by parametric deconvolution using 2-compartment model of C-peptide kinetics, and incremental area under the curve (AUC) was calculated for 30, 60 and 180-minutes. GPA: acute insulin (AIR) and C-peptide responses (ACR) were calculated as average post-arginine insulin or C-peptide response minus pre-arginine insulin or C-peptide under fasting (AIRarg and ACRarg), ~230 mg/dL (AIRpot and ACRpot), and ~340 mg/dL (AIRmax and ACRmax) hyperglycemic clamp conditions. Relationships of MMTT to GPA parameters were derived using Pearson's correlation coefficient. Predicted values were generated for MMTT ISR and compared to GPA parameters using Bland Altman analysis to assess degree of concordance. Results: 85 PwCF (45 female; 75 PI-CF and 10 PS-CF) median (range) age 23 (6-56) years with BMI 23 (13-34) kg/m2, HbA1c 5.5 (3.8-10.2)%, and FEV1%-predicted 88 (26-125) and 4 non-CF controls of similar age and BMI were included. ISR AUC30min positively correlated with AIRarg (r=0.55), AIRpot (r=0.62), and AIRmax (r=0.46) and with ACRarg (r=0.59), ACRpot (r=0.60), and ACRmax (r=0.51) (all P<0.001). ISR AUC30min strongly predicted AIRarg (concordance=0.86), AIRpot (concordance=0.89), and AIRmax (concordance=0.76) at lower mean GPA values, but underestimated AIRarg, AIRpot, and AIRmax at higher GPA-defined ß-cell secretory capacity. Between test agreement was unaltered by adjustment for study group, OGTT glucose category, and BMI. Conclusion: Early-phase insulin secretion during MMTT can accurately predict GPA-derived measures of ß-cell function and secretory capacity when functional ß-cell mass is reduced. These data can inform future multicenter studies requiring reliable, standardized, and technically feasible testing mechanisms to quantify ß-cell function and secretory capacity.


Asunto(s)
Fibrosis Quística , Femenino , Humanos , Adulto Joven , Adulto , Secreción de Insulina , Péptido C , Estudios Prospectivos , Insulina , Arginina , Glucosa
11.
J Biotechnol ; 385: 49-57, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38442841

RESUMEN

The transient receptor potential melastatin 2 (TRPM2) channel plays a central role in connecting redox state with calcium signaling in living cells. This coupling makes TRPM2 essential for physiological functions such as pancreatic insulin secretion or cytokine production, but also allows it to contribute to pathological processes, including neuronal cell death or ischemia-reperfusion injury. Genetic deletion of the channel, albeit not lethal, alters physiological functions in mice. In humans, population genetic studies and whole-exome sequencing have identified several common and rare genetic variants associated with mental disorders and neurodegenerative diseases, including single nucleotide variants (SNVs) in exonic regions. In this review, we summarize available information on the four best-documented SNVs: one common (rs1556314) and three rare genetic variants (rs139554968, rs35288229, and rs145947009), manifested in amino acid substitutions D543E, R707C, R755C, and P1018L respectively. We discuss existing evidence supporting or refuting the associations between SNVs and disease. Furthermore, we aim to interpret the molecular impacts of these amino acid substitutions based on recently published structures of human TRPM2. Finally, we formulate testable hypotheses and suggest means to investigate them. Studying the function of proteins with rare mutations might provide insight into disease etiology and delineate new drug targets.


Asunto(s)
Enfermedades Neurodegenerativas , Canales Catiónicos TRPM , Humanos , Ratones , Animales , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Insulina/metabolismo , Secreción de Insulina , Oxidación-Reducción , Calcio/metabolismo
12.
Sci Rep ; 14(1): 7451, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548796

RESUMEN

For 100 years, the Intravenous glucose tolerance test (IVGTT) has been used extensively in researching the pathophysiology of diabetes mellitus and AIRg-the IVGTT-induced acute insulin response to the rapid rise in circulating glucose-is a key measure of insulin secretory capacity. For an effective evaluation of AIRg, IVGTT glucose loading should be adjusted for glucose distribution volume (gVOL) to provide an invariant, trend-free immediate rise in circulating glucose (ΔG0). Body weight-based glucose loads have been widely used but whether these achieve a trend-free ΔG0 does not appear to have been investigated. By analysing variation in AIRg, ΔG0 and gVOL with a range of IVGTT loads, both observed and simulated, we explored the hypothesis that there would be an optimum anthropometry-based IVGTT load calculation that, by achieving a trend-free ΔG0, would not compromise evaluation of AIRg as an index of beta cell function. Data derived from patient and research volunteer records for 3806 IVGTT glucose and insulin profiles. Among the non-obese, as gVOL rose, weight increased disproportionately rapidly. Consequently, the IVGTT glucose load needed for an invariant ΔG0 was progressively overestimated, accounting for 47% of variation in AIRg. Among the obese, ΔG0 was trend-free yet AIRg increased by 11.6% per unit body mass index, consistent with a more proportionate increase in weight with gVOL and a hyperinsulinaemic adaptation to adiposity-associated insulin resistance. Simulations further confirmed our hypothesis by demonstrating that a body surface area-based IVGTT load calculation could provide for a more generally invariant IVGTT ΔG0.


Asunto(s)
Glucemia , Resistencia a la Insulina , Humanos , Prueba de Tolerancia a la Glucosa , Secreción de Insulina , Glucemia/metabolismo , Insulina/metabolismo , Glucosa , Obesidad
13.
Methods Mol Biol ; 2758: 291-306, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549020

RESUMEN

Several amphibian peptides that were first identified on the basis of their antimicrobial or cytotoxic properties have subsequently shown potential for development into agents for the treatment of patients with Type 2 diabetes. A strategy is presented for the isolation and characterization of such peptides that are present in norepinephrine-stimulated skin secretions from a range of frog species. The methodology involves (1) fractionation of the secretions by reversed-phase HPLC, (2) identification of fractions containing components that stimulate the rate of release of insulin from BRIN-BD11 clonal ß-cells without simultaneously stimulating the release of lactate dehydrogenase, (3) identification of active peptides in the fractions in the mass range 1-6 kDa by MALDI-ToF mass spectrometry, (4) purification of the peptides to near homogeneity by further reversed-phase HPLC on various column matrices, and (5) structural characterization by automated Edman degradation. The effect of synthetic replicates of the active peptides on glucose homeostasis in vivo may be evaluated in appropriate animal models of Type 2 diabetes such as db/db mice and mice fed a high fat diet to produce obesity, glucose intolerance, and insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Ratones , Humanos , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Secreción de Insulina , Línea Celular , Insulina/metabolismo , Anuros/metabolismo , Piel/metabolismo
14.
J Diabetes Res ; 2024: 5558634, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550917

RESUMEN

Introduction: Childhood obesity is increasing worldwide and presents as a global health issue due to multiple metabolic comorbidities. About 1% of adolescents with obesity develop type 2 diabetes (T2D); however, little is known about the genetic and pathophysiological background at young age. The objective of this study was to assess the prevalence of impaired glucose regulation (IGR) in a large cohort of children and adolescents with obesity and to characterize insulin sensitivity and insulin secretion. We also wanted to investigate adolescents with insulin secretion disorder more closely and analyze possible candidate genes of diabetes in a subcohort. Methods: We included children and adolescents with obesity who completed an oral glucose tolerance test (OGTT, glucose + insulin) in the outpatient clinic. We calculated Matsuda index, the area under the curve (AUC (Ins/Glu)), and an oral disposition index (ISSI-2) to estimate insulin resistance and beta-cell function. We identified patients with IGR and low insulin secretion (maximum insulin during OGTT < 200 mU/l) and tested a subgroup using next generation sequencing to identify possible mutations in 103 candidate genes. Results: The total group consisted of 903 children and adolescents with obesity. 4.5% showed impaired fasting glucose, 9.4% impaired glucose tolerance, and 1.2% T2D. Matsuda index and Total AUC (Ins/Glu) showed a hyperbolic relationship. Out of 39 patients with low insulin secretion, we performed genetic testing on 12 patients. We found five monogenetic defects (ABCC8 (n = 3), GCK (n = 1), and GLI2/PTF1A (n = 1)). Conclusion: Using surrogate parameters of beta-cell function and insulin resistance can help identify patients with insulin secretion disorder. A prevalence of 40% mutations of known diabetes genes in the subgroup with low insulin secretion suggests that at least 1.7% of patients with adolescent obesity have monogenic diabetes. A successful molecular genetic diagnosis can help to improve individual therapy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Obesidad Pediátrica , Humanos , Niño , Adolescente , Obesidad Pediátrica/genética , Resistencia a la Insulina/genética , Diabetes Mellitus Tipo 2/metabolismo , Secreción de Insulina , Insulina/metabolismo , Glucosa , Biología Molecular , Glucemia/metabolismo
15.
Bioorg Med Chem ; 103: 117695, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38522346

RESUMEN

Resveratrol oligomers, ranging from dimers to octamers, are formed through regioselective synthesis involving the phenoxy radical coupling of resveratrol building blocks, exhibiting remarkable therapeutic potential, including antidiabetic properties. In this study, we elucidate the mechanistic insights into the insulin secretion potential of a resveratrol dimer, (-)-Ampelopsin F (AmF), isolated from the acetone extract of Vatica chinensis L. stem bark in Pancreatic Beta-TC-6 cell lines. The AmF (50 µM) treated cells exhibited a 3.5-fold increase in insulin secretion potential as compared to unstimulated cells, which was achieved through the enhancement of mitochondrial membrane hyperpolarization, elevation of intracellular calcium concentration, and upregulation of GLUT2 and glucokinase expression in pancreatic Beta-TC-6 cell lines. Furthermore, AmF effectively inhibited the activity of DPP4, showcasing a 2.5-fold decrease compared to the control and a significant 6.5-fold reduction compared to the positive control. These findings emphasize AmF as a potential lead for the management of diabetes mellitus and point to its possible application in the next therapeutic initiatives.


Asunto(s)
Flavonoides , Células Secretoras de Insulina , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Resveratrol , Glucoquinasa/metabolismo , Glucosa/metabolismo
16.
Curr Pharm Des ; 30(2): 100-114, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532322

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a global public health concern. Currently, the cornerstone of NAFLD treatment is lifestyle modification and, if necessary, weight loss. However, compliance is a challenge, and this approach alone may not be sufficient to halt and treat the more serious disease development, so medication is urgently needed. Nevertheless, no medicines are approved to treat NAFLD. Glucagon-like peptide-1 (GLP-1) is an enteropeptide hormone that inhibits glucagon synthesis, promotes insulin secretion, and delays gastric emptying. GLP-1 has been found in recent studies to be beneficial for the management of NAFLD, and the marketed GLP-1 agonist drugs have different degrees of effectiveness for NAFLD while lowering blood glucose. In this article, we review GLP-1 and its physiological roles, the pathogenesis of NAFLD, the correlation between NAFLD and GLP-1 signaling, and potential strategies for GLP-1 treatment of NAFLD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/fisiología , Glucagón/uso terapéutico , Glucemia , Secreción de Insulina , Receptor del Péptido 1 Similar al Glucagón , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico
17.
Curr Med Sci ; 44(2): 346-354, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38517672

RESUMEN

OBJECTIVE: While the reduction of transient receptor potential channel subfamily M member 5 (TRPM5) has been reported in islet cells from type 2 diabetic (T2D) mouse models, its role in lipotoxicity-induced pancreatic ß-cell dysfunction remains unclear. This study aims to study its role. METHODS: Pancreas slices were prepared from mice subjected to a high-fat-diet (HFD) at different time points, and TRPM5 expression in the pancreatic ß cells was examined using immunofluorescence staining. Glucose-stimulated insulin secretion (GSIS) defects caused by lipotoxicity were mimicked by saturated fatty acid palmitate (Palm). Primary mouse islets and mouse insulinoma MIN6 cells were treated with Palm, and the TRPM5 expression was detected using qRT-PCR and Western blotting. Palm-induced GSIS defects were measured following siRNA-based Trpm5 knockdown. The detrimental effects of Palm on primary mouse islets were also assessed after overexpressing Trpm5 via an adenovirus-derived Trpm5 (Ad-Trpm5). RESULTS: HFD feeding decreased the mRNA levels and protein expression of TRPM5 in mouse pancreatic islets. Palm reduced TRPM5 protein expression in a time- and dose-dependent manner in MIN6 cells. Palm also inhibited TRPM5 expression in primary mouse islets. Knockdown of Trpm5 inhibited insulin secretion upon high glucose stimulation but had little effect on insulin biosynthesis. Overexpression of Trpm5 reversed Palm-induced GSIS defects and the production of functional maturation molecules unique to ß cells. CONCLUSION: Our findings suggest that lipotoxicity inhibits TRPM5 expression in pancreatic ß cells both in vivo and in vitro and, in turn, drives ß-cell dysfunction.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Animales , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Secreción de Insulina
18.
Am J Physiol Endocrinol Metab ; 326(5): E567-E576, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477664

RESUMEN

Signaling through prostaglandin E2 EP3 receptor (EP3) actively contributes to the ß-cell dysfunction of type 2 diabetes (T2D). In T2D models, full-body EP3 knockout mice have a significantly worse metabolic phenotype than wild-type controls due to hyperphagia and severe insulin resistance resulting from loss of EP3 in extra-pancreatic tissues, masking any potential beneficial effects of EP3 loss in the ß cell. We hypothesized ß-cell-specific EP3 knockout (EP3 ßKO) mice would be protected from high-fat diet (HFD)-induced glucose intolerance, phenocopying mice lacking the EP3 effector, Gαz, which is much more limited in its tissue distribution. When fed a HFD for 16 wk, though, EP3 ßKO mice were partially, but not fully, protected from glucose intolerance. In addition, exendin-4, an analog of the incretin hormone, glucagon-like peptide 1, more strongly potentiated glucose-stimulated insulin secretion in islets from both control diet- and HFD-fed EP3 ßKO mice as compared with wild-type controls, with no effect of ß-cell-specific EP3 loss on islet insulin content or markers of replication and survival. However, after 26 wk of diet feeding, islets from both control diet- and HFD-fed EP3 ßKO mice secreted significantly less insulin as a percent of content in response to stimulatory glucose, with or without exendin-4, with elevated total insulin content unrelated to markers of ß-cell replication and survival, revealing severe ß-cell dysfunction. Our results suggest that EP3 serves a critical role in temporally regulating ß-cell function along the progression to T2D and that there exist Gαz-independent mechanisms behind its effects.NEW & NOTEWORTHY The EP3 receptor is a strong inhibitor of ß-cell function and replication, suggesting it as a potential therapeutic target for the disease. Yet, EP3 has protective roles in extrapancreatic tissues. To address this, we designed ß-cell-specific EP3 knockout mice and subjected them to high-fat diet feeding to induce glucose intolerance. The negative metabolic phenotype of full-body knockout mice was ablated, and EP3 loss improved glucose tolerance, with converse effects on islet insulin secretion and content.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Células Secretoras de Insulina , Animales , Ratones , Secreción de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Exenatida/farmacología , Intolerancia a la Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidad/metabolismo , Glucosa/metabolismo , Ratones Noqueados , Prostaglandinas/metabolismo , Prostaglandinas/farmacología
19.
Horm Metab Res ; 56(4): 286-293, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471570

RESUMEN

Intraportal islet transplantation in patients with type 1 diabetes enables restoration of glucose-regulated insulin secretion. However, several factors hamper a widespread application and long-term success: chronic hypoxia, an inappropriate microenvironment and suppression of regenerative and proliferative potential by high local levels of immunosuppressive agents. Therefore, the identification of alternative and superior transplant sites is of major scientific and clinical interest. Here, we aim to evaluate the adrenal as an alternative transplantation site. The adrenal features a particular microenvironment with extensive vascularization, anti-apoptotic and pro-proliferative, anti-inflammatory and immunosuppressive effects. To validate this novel transplantation site, an in vitro co-culture system of adrenal cells and pancreatic islets was established and viability, islet survival, functional potency and antioxidative defense capacity were evaluated. For in vivo validation, an immune-deficient diabetic mouse model for intra-adrenal islet transplantation was applied. The functional capacity of intra-adrenally grafted islets to reverse diabetes was compared to a standard islet transplant model and measures of engraftment such as vascular integration were evaluated. The presence of adrenal cells positively impacted on cell metabolism and oxidative stress. Following transplantation, we could demonstrate enhanced islet function in comparison to standard models with improved engraftment and superior re-vascularization. This experimental approach allows for novel insights into the interaction of endocrine systems and may open up novel strategies for islet transplantation augmented through the bystander effect of other endocrine cells or the active factors secreted by adrenal cells modulating the microenvironment.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Ratones , Animales , Humanos , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Glándulas Suprarrenales , Secreción de Insulina
20.
Eur J Med Chem ; 269: 116342, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38531211

RESUMEN

Glucagon-like peptide-1 (GLP-1), secreted by L cells in the small intestine, assumes a central role in managing type 2 diabetes mellitus (T2DM) and obesity. Its influence on insulin secretion and gastric emptying positions it as a therapeutic linchpin. However, the limited applicability of native GLP-1 stems from its short half-life, primarily due to glomerular filtration and the inactivating effect of dipeptidyl peptidase-IV (DPP-IV). To address this, various structural modification strategies have been developed to extend GLP-1's half-life. Despite the commendable efficacy displayed by current GLP-1 receptor agonists, inherent limitations persist. A paradigm shift emerges with the advent of unimolecular multi-agonists, such as the recently introduced tirzepatide, wherein GLP-1 is ingeniously combined with other gastrointestinal hormones. This novel approach has captured the spotlight within the diabetes and obesity research community. This review summarizes the physiological functions of GLP-1, systematically explores diverse structural modifications, delves into the realm of unimolecular multi-agonists, and provides a nuanced portrayal of the developmental prospects that lie ahead for GLP-1 analogs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Humanos , Péptido 1 Similar al Glucagón/agonistas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Secreción de Insulina , Obesidad/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA